Średnia ruchoma Ten przykład pokazuje, jak obliczyć średnią ruchomą szeregu czasowego w Excelu. Średnia ruchoma służy do łagodzenia nieprawidłowości (szczytów i dolin) w celu łatwego rozpoznawania trendów. 1. Najpierw przyjrzyjmy się naszej serii czasowej. 2. Na karcie Dane kliknij Analiza danych. Uwaga: nie można znaleźć przycisku Analiza danych Kliknij tutaj, aby załadować dodatek Analysis ToolPak. 3. Wybierz średnią ruchomą i kliknij OK. 4. Kliknij pole Input Range i wybierz zakres B2: M2. 5. Kliknij w polu Interwał i wpisz 6. 6. Kliknij pole Zakres wyjściowy i wybierz komórkę B3. 8. Narysuj wykres tych wartości. Objaśnienie: ponieważ ustawiliśmy przedział na 6, średnia ruchoma jest średnią z poprzednich 5 punktów danych i bieżącego punktu danych. W rezultacie szczyty i doliny są wygładzone. Wykres pokazuje rosnący trend. Program Excel nie może obliczyć średniej ruchomej dla pierwszych 5 punktów danych, ponieważ nie ma wystarczającej liczby poprzednich punktów danych. 9. Powtórz kroki od 2 do 8 dla przedziału 2 i odstępu 4. Wniosek: Im większy przedział, tym bardziej wygładzone są szczyty i doliny. Im mniejszy przedział czasu, tym bardziej zbliżone są średnie kroczące do rzeczywistych punktów danych. Średnie kroczące: Jakie są jednymi z najpopularniejszych wskaźników technicznych, średnie kroczące służą do pomiaru kierunku aktualnego trendu. Każdy typ średniej ruchomej (zwykle napisany w tym samouczku jako MA) jest wynikiem matematycznym, który jest obliczany przez uśrednienie liczby przeszłych punktów danych. Po ustaleniu, uzyskana średnia jest następnie nanoszona na wykres w celu umożliwienia handlowcom spojrzenia na wygładzone dane zamiast koncentrowania się na codziennych wahaniach cen, które są nieodłączne na wszystkich rynkach finansowych. Najprostszą formę średniej ruchomej, znaną jako prosta średnia ruchoma (SMA), oblicza się, przyjmując średnią arytmetyczną z danego zestawu wartości. Na przykład, aby obliczyć podstawową 10-dniową średnią ruchomą, należy dodać ceny zamknięcia z ostatnich 10 dni, a następnie podzielić wynik przez 10. Na rysunku 1 suma cen z ostatnich 10 dni (110) jest równa podzielona przez liczbę dni (10), aby osiągnąć średnią 10-dniową. Jeśli przedsiębiorca chce zamiast tego uzyskać średnią 50-dniową, zostanie wykonany ten sam rodzaj obliczeń, ale będzie obejmował ceny w ciągu ostatnich 50 dni. Wynikowa średnia poniżej (11) uwzględnia 10 ostatnich punktów danych, aby dać handlowcom pojęcie, jak wyceniany jest majątek w stosunku do ostatnich 10 dni. Być może zastanawiasz się, dlaczego techniczni handlowcy nazywają to narzędzie średnią ruchomą, a nie zwykłą średnią. Odpowiedź jest taka, że gdy stają się dostępne nowe wartości, najstarsze punkty danych muszą zostać usunięte z zestawu i nowe punkty danych muszą wejść, aby je zastąpić. W związku z tym zbiór danych stale się rozlicza dla nowych danych, gdy tylko stają się dostępne. Ta metoda obliczania zapewnia uwzględnianie wyłącznie bieżących informacji. Na rysunku 2, po dodaniu do zestawu nowej wartości 5, czerwone pole (reprezentujące ostatnie 10 punktów danych) przesuwa się w prawo, a ostatnia wartość 15 zostaje usunięta z obliczeń. Ponieważ stosunkowo mała wartość 5 zastępuje wysoką wartość 15, można by oczekiwać, że średnia zestawu danych zmniejszy się, co ma miejsce w tym przypadku od 11 do 10. Jak wyglądają średnie kroczące Po wartościach MA zostały obliczone, są nanoszone na wykres, a następnie łączone w celu utworzenia średniej ruchomej linii. Te linie krzywoliniowe są powszechne na wykresach handlowców technicznych, ale sposób ich użycia może się drastycznie różnić (więcej o tym później). Jak widać na rys. 3, można dodać więcej niż jedną średnią ruchomą do dowolnego wykresu, dostosowując liczbę przedziałów czasowych użytych w obliczeniach. Te zakrzywione linie mogą początkowo wydawać się rozpraszające lub mylące, ale z biegiem czasu przyzwyczaisz się do nich. Czerwona linia to po prostu średnia cena z ostatnich 50 dni, a niebieska linia to średnia cena z ostatnich 100 dni. Teraz, gdy rozumiesz, czym jest średnia ruchoma i jak wygląda, dobrze jest wprowadzić inny typ średniej ruchomej i zbadać, jak różni się ona od poprzednio wspomnianej prostej średniej kroczącej. Prosta średnia ruchoma jest niezwykle popularna wśród handlowców, ale jak wszystkie wskaźniki techniczne, ma swoich krytyków. Wiele osób twierdzi, że przydatność SMA jest ograniczona, ponieważ każdy punkt w serii danych jest ważony tak samo, niezależnie od tego, gdzie występuje w sekwencji. Krytycy twierdzą, że najnowsze dane są ważniejsze niż dane starsze i powinny mieć większy wpływ na końcowy wynik. W odpowiedzi na tę krytykę handlowcy zaczęli przykładać większą wagę do najnowszych danych, co od tego czasu doprowadziło do wynalezienia różnego rodzaju nowych średnich, z których najpopularniejszą jest wykładnicza średnia ruchoma (EMA). (Aby uzyskać więcej informacji, zobacz Podstawy ważonych średnich kroczących i jaka jest różnica między wartością SMA a wartością EMA) Wykładnicza średnia ruchoma Wykładnicza średnia krocząca jest rodzajem średniej ruchomej, która zwiększa wagę ostatnich cen w celu zwiększenia jej elastyczności do nowych informacji. Nauka nieco skomplikowanego równania do obliczania EMA może być niepotrzebna dla wielu handlowców, ponieważ prawie wszystkie pakiety wykresów wykonują obliczenia dla ciebie. Jednakże, dla was, maniaków matematyki, macie tutaj równanie EMA: Używając wzoru do obliczenia pierwszego punktu EMA, możecie zauważyć, że nie ma żadnej dostępnej wartości do wykorzystania jako poprzednia EMA. Ten mały problem można rozwiązać, rozpoczynając obliczenia za pomocą prostej średniej ruchomej i kontynuując z powyższą formułą. Dostarczyliśmy przykładowy arkusz kalkulacyjny, który zawiera rzeczywiste przykłady obliczania zarówno prostej średniej kroczącej, jak i wykładniczej średniej kroczącej. Różnica między EMA i SMA Teraz, gdy masz już lepsze zrozumienie sposobu obliczania SMA i EMA, przyjrzyjmy się, jak te średnie różnią się. Patrząc na obliczenia EMA, zauważysz, że większy nacisk kładzie się na ostatnie punkty danych, co czyni je typem średniej ważonej. Na rysunku 5 liczby okresów stosowanych w każdej średniej są identyczne (15), ale EMA reaguje szybciej na zmieniające się ceny. Zwróć uwagę, że EMA ma wyższą wartość, gdy cena rośnie, i spada szybciej niż SMA, gdy cena spada. Ta responsywność jest głównym powodem, dla którego wielu inwestorów woli używać EMA przez SMA. Co oznaczają różne dni Średnie ruchome są całkowicie konfigurowalnym wskaźnikiem, co oznacza, że użytkownik może swobodnie wybierać dowolne ramy czasowe, jakie chcą uzyskać przy tworzeniu średniej. Najczęstsze okresy stosowane w średnich kroczących to 15, 20, 30, 50, 100 i 200 dni. Im krótszy jest przedział czasowy do stworzenia średniej, tym bardziej wrażliwy będzie na zmiany cen. Im dłuższy przedział czasu, tym mniej wrażliwy lub bardziej wygładzony, średnia będzie. Podczas ustawiania średnich kroczących nie ma odpowiednich ram czasowych. Najlepszym sposobem na sprawdzenie, który z nich działa najlepiej, jest eksperymentowanie z wieloma różnymi okresami czasu, dopóki nie znajdziesz takiego, który pasuje do Twojej strategii. Średnie kroczące: Jak korzystać z ruchomych modeli wygładzania średnich i wykładniczych Jako pierwszy krok w wychodzeniu poza modele średnie, modele spacerów losowych i modele trendów liniowych, wzorce i trendy niesezonowe można ekstrapolować za pomocą modelu ruchomego lub wygładzającego. Podstawowym założeniem modeli uśredniania i wygładzania jest to, że szeregi czasowe są lokalnie stacjonarne z wolno zmieniającą się średnią. W związku z tym bierzemy średnią ruchomą (lokalną), aby oszacować aktualną wartość średniej, a następnie wykorzystać ją jako prognozę na najbliższą przyszłość. Można to uznać za kompromis pomiędzy modelem średnim a modelem losowego chodzenia bez dryftu. Ta sama strategia może zostać wykorzystana do oszacowania i ekstrapolacji lokalnego trendu. Średnia ruchoma jest często nazywana wersją quotsmoothedquot oryginalnej serii, ponieważ krótkoterminowe uśrednianie ma wpływ na wygładzenie nierówności w oryginalnej serii. Dostosowując stopień wygładzenia (szerokość średniej ruchomej) możemy mieć nadzieję na uzyskanie optymalnej równowagi między wydajnością modeli średniej i losowej. Najprostszym rodzajem modelu uśredniającego jest. Prosta (równo ważona) Średnia ruchoma: Prognoza wartości Y w czasie t1, która jest dokonywana w czasie t, jest równa prostej średniej z ostatnich obserwacji: (Tu i gdzie indziej będę używał symbolu 8220Y-hat8221, aby stać dla prognozy szeregu czasowego Y dokonanego najwcześniej jak to możliwe wcześniej przez dany model.) Ta średnia jest wyśrodkowana w okresie t - (m1) 2, co oznacza, że oszacowanie średniej lokalnej będzie opóźniać się w stosunku do rzeczywistej wartości wartość średniej lokalnej o około (m1) 2 okresy. Tak więc, mówimy, że średni wiek danych w prostej średniej kroczącej wynosi (m1) 2 w stosunku do okresu, dla którego obliczana jest prognoza: jest to ilość czasu, o którą prognozy będą się opóźniać za punktami zwrotnymi w danych . Na przykład, jeśli uśrednisz 5 ostatnich wartości, prognozy będą o około 3 opóźnienia w odpowiedzi na punkty zwrotne. Zauważ, że jeśli m1, model prostej średniej ruchomej (SMA) jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli m jest bardzo duże (porównywalne z długością okresu szacowania), model SMA jest równoważny modelowi średniemu. Podobnie jak w przypadku każdego parametru modelu prognostycznego, zwyczajowo koryguje się wartość k, aby uzyskać najlepsze dopasowanie do danych, tj. Średnio najmniejsze błędy prognozy. Oto przykład serii, która wydaje się wykazywać losowe fluktuacje wokół wolno zmieniającej się średniej. Po pierwsze, spróbujmy dopasować go do modelu losowego spaceru, który jest odpowiednikiem prostej średniej kroczącej z 1 słowa: model losowego spaceru bardzo szybko reaguje na zmiany w serii, ale czyniąc to, wybiera dużą część quota w tekście. dane (fluktuacje losowe), a także quotsignalquot (średnia miejscowa). Jeśli zamiast tego spróbujemy prostej średniej kroczącej z 5 terminów, otrzymamy gładszy zestaw prognoz: Pięciokrotna prosta średnia ruchoma daje znacznie mniejsze błędy niż model losowego spaceru w tym przypadku. Średni wiek danych w tej prognozie wynosi 3 ((51) 2), więc ma tendencję do pozostawania w tyle za punktami zwrotnymi o około trzy okresy. (Na przykład, pogorszenie koniunktury zdaje się mieć miejsce w okresie 21, ale prognozy nie zmieniają się aż do kilku kolejnych okresów.) Zwróć uwagę, że długoterminowe prognozy z modelu SMA są prostą poziomą, tak jak w przypadku losowego spaceru Model. Tak więc model SMA zakłada, że nie ma trendu w danych. Jednakże, podczas gdy prognozy z modelu losowego spaceru są po prostu równe ostatniej obserwowanej wartości, prognozy z modelu SMA są równe średniej ważonej ostatnich wartości. Limity ufności obliczone przez Statgraphics dla długoterminowych prognoz prostej średniej kroczącej nie stają się szersze wraz ze wzrostem horyzontu prognozy. To oczywiście nie jest poprawne Niestety, nie istnieje żadna podstawowa teoria statystyczna, która mówi nam, w jaki sposób przedziały ufności powinny poszerzyć się dla tego modelu. Jednak nie jest zbyt trudno obliczyć empiryczne szacunki limitów zaufania dla prognoz o dłuższym horyzoncie. Można na przykład skonfigurować arkusz kalkulacyjny, w którym model SMA byłby używany do prognozowania 2 kroków do przodu, 3 kroków do przodu itp. W próbie danych historycznych. Następnie można obliczyć standardowe odchylenia standardowe błędów w każdym horyzoncie prognozy, a następnie skonstruować przedziały ufności dla prognoz długoterminowych, dodając i odejmując wielokrotności odpowiedniego odchylenia standardowego. Jeśli spróbujemy 9-dniowej prostej średniej kroczącej, otrzymamy jeszcze bardziej wygładzone prognozy i większy efekt opóźniający: Średni wiek to teraz 5 okresów ((91) 2). Jeśli weźmiemy 19-dniową średnią ruchomą, średni wiek wzrośnie do 10: Należy zauważyć, że w rzeczywistości prognozy obecnie pozostają w tyle za punktami zwrotnymi o około 10 okresów. Jaka ilość wygładzania jest najlepsza dla tej serii Oto tabela, która porównuje ich statystyki błędów, w tym także średnią 3-dniową: Model C, 5-punktowa średnia ruchoma, daje najniższą wartość RMSE o niewielki margines w porównaniu z 3 - term i 9-term średnich, a ich inne statystyki są prawie identyczne. Tak więc, wśród modeli z bardzo podobnymi statystykami błędów, możemy wybrać, czy wolelibyśmy nieco większą reakcję, czy nieco większą płynność w prognozach. (Powrót do początku strony.) Browns Simple Exponential Smoothing (wykładniczo ważona średnia ruchoma) Opisany powyżej prosty model średniej ruchomej ma niepożądaną właściwość, że traktuje ostatnie k obserwacji równo i całkowicie ignoruje wszystkie poprzednie obserwacje. Intuicyjnie, przeszłe dane powinny być dyskontowane w bardziej stopniowy sposób - na przykład ostatnia obserwacja powinna mieć nieco większą wagę niż druga ostatnia, a druga ostatnia powinna mieć nieco większą wagę niż trzecia ostatnia; wkrótce. Wykonywany jest prosty model wygładzania wykładniczego (SES). Niech 945 oznacza stałą kwotową (liczbę od 0 do 1). Jednym ze sposobów napisania modelu jest zdefiniowanie serii L, która reprezentuje aktualny poziom (tj. Miejscową średnią wartość) serii oszacowanej na podstawie danych do chwili obecnej. Wartość L w czasie t jest obliczana rekurencyjnie z jego własnej poprzedniej wartości w następujący sposób: Zatem bieżącą wygładzoną wartością jest interpolacja między poprzednią wygładzoną wartością a bieżącą obserwacją, gdzie 945 kontroluje bliskość interpolowanej wartości do najnowszej. obserwacja. Prognoza na następny okres jest po prostu bieżącą wygładzoną wartością: Równoważnie, możemy wyrazić następną prognozę bezpośrednio w odniesieniu do wcześniejszych prognoz i poprzednich obserwacji, w dowolnej z następujących równoważnych wersji. W pierwszej wersji prognozą jest interpolacja między poprzednią prognozą i poprzednią obserwacją: w drugiej wersji następna prognoza jest uzyskiwana przez dostosowanie poprzedniej prognozy w kierunku poprzedniego błędu o wartość 945. jest błąd popełniony przy czas t. W trzeciej wersji prognozą jest ważona ruchoma średnia ważona wykładniczo (tj. Zdyskontowana) ze współczynnikiem dyskontowym 1- 945: Wersja interpolacyjna formuły prognostycznej jest najprostsza do zastosowania, jeśli wdraża się model w arkuszu kalkulacyjnym: pasuje on do pojedyncza komórka i zawiera odwołania do komórek wskazujące poprzednią prognozę, poprzednią obserwację i komórkę, w której przechowywana jest wartość 945. Należy zauważyć, że jeśli model 945 1, model SES jest równoważny modelowi chodzenia swobodnego (bez wzrostu). Jeśli 945 0, model SES jest równoważny modelowi średniemu, przy założeniu, że pierwsza wygładzona wartość jest równa średniej. (Powrót do początku strony.) Średni wiek danych w prognozie wygładzania prostego wykładniczego wynosi 1 945 w stosunku do okresu, dla którego obliczana jest prognoza. (To nie powinno być oczywiste, ale można je łatwo wykazać, oceniając nieskończoną serię.) Dlatego prosta prognoza średniej ruchomej ma tendencję do pozostawania w tyle za punktami zwrotnymi o około 1 945 okresów. Na przykład, gdy 945 0,5 opóźnienie wynosi 2 okresy, gdy 945 ± 0,2 opóźnienie wynosi 5 okresów, gdy 945 ± 0,1 opóźnienie wynosi 10 okresów, i tak dalej. Dla danego średniego wieku (to jest ilości opóźnienia), prosta prognoza wygładzania wykładniczego (SES) jest nieco lepsza od prognozy prostej średniej ruchomej (SMA), ponieważ umieszcza względnie większą wagę w najnowszej obserwacji - ie. jest nieco bardziej obojętny na zmiany zachodzące w niedawnej przeszłości. Na przykład model SMA z 9 terminami i model SES z 945 0.2 mają średnią wieku 5 lat dla danych w swoich prognozach, ale model SES przykłada większą wagę do ostatnich 3 wartości niż model SMA i do w tym samym czasie nie ma on całkowicie 8220forget8222 o wartościach większych niż 9 okresów, jak pokazano na tym wykresie: Kolejną ważną zaletą modelu SES w porównaniu z modelem SMA jest to, że model SES używa parametru wygładzania, który jest nieustannie zmienny, dzięki czemu można go łatwo zoptymalizować za pomocą algorytmu quotsolverquot, aby zminimalizować błąd średniokwadratowy. Optymalna wartość 945 w modelu SES dla tej serii okazuje się być 0,2961, jak pokazano tutaj: Średni wiek danych w tej prognozie wynosi 10,2961 3,4 okresów, co jest podobne do 6-okresowej prostej średniej kroczącej. Prognozy długoterminowe z modelu SES są prostą poziomą. jak w modelu SMA i modelu chodzenia bez wzrostu. Należy jednak zauważyć, że przedziały ufności obliczone przez Statgraphics teraz rozchodzą się w rozsądny sposób, i że są one znacznie węższe niż przedziały ufności dla modelu losowego spaceru. Model SES zakłada, że seria jest w pewnym stopniu przewidywalna, podobnie jak model losowego spaceru. Model SES jest w rzeczywistości szczególnym przypadkiem modelu ARIMA. więc teoria statystyczna modeli ARIMA zapewnia solidną podstawę do obliczania przedziałów ufności dla modelu SES. W szczególności model SES jest modelem ARIMA z jedną niesezonową różnicą, terminem MA (1) i nie ma stałego okresu. inaczej znany jako model DAIMA (0,1,1) bez stałej wartości. Współczynnik MA (1) w modelu ARIMA odpowiada ilości 1-945 w modelu SES. Na przykład, jeśli dopasujesz model ARIMA (0,1,1) bez stałej do analizowanej tutaj serii, szacowany współczynnik MA (1) okaże się równy 0,7029, czyli prawie dokładnie jeden minus 0,2961. Możliwe jest dodanie do modelu SES założenia niezerowego stałego trendu liniowego. Aby to zrobić, po prostu określ model ARIMA z jedną niesezonową różnicą i terminem MA (1) ze stałą, tj. Model ARIMA (0,1,1) ze stałą. Prognozy długoterminowe będą miały tendencję równą średniej tendencji obserwowanej w całym okresie szacowania. Nie można tego zrobić w połączeniu z korektą sezonową, ponieważ opcje korekty sezonowej są wyłączone, gdy typ modelu jest ustawiony na ARIMA. Można jednak dodać stały, długotrwały trend wykładniczy do prostego modelu wygładzania wykładniczego (z korektą sezonową lub bez niego) za pomocą opcji korekty inflacji w procedurze prognozowania. Odpowiednia stopa inflacji (procent wzrostu) na okres może być oszacowana jako współczynnik nachylenia w liniowym modelu trendu dopasowany do danych w połączeniu z logarytmem naturalnym, lub może być oparty na innych, niezależnych informacjach dotyczących długoterminowych perspektyw wzrostu . (Powrót do początku strony.) Browns Linear (tzn. Podwójnie) Exponential Smoothing Modele SMA i modele SES zakładają, że nie ma żadnego trendu w danych (co jest zwykle w porządku lub przynajmniej niezbyt dobre dla 1- prognozy wyprzedzające, gdy dane są stosunkowo hałaśliwe) i mogą być modyfikowane w celu włączenia stałego trendu liniowego, jak pokazano powyżej. A co z trendami krótkoterminowymi Jeśli w serii pojawiają się zmienne stopy wzrostu lub cykliczny wzór, który wyraźnie odróżnia się od hałasu, i jeśli istnieje potrzeba przewidywania z wyprzedzeniem dłuższym niż 1 okres, wówczas można również oszacować trend lokalny. problem. Prosty model wygładzania wykładniczego można uogólnić w celu uzyskania liniowego modelu wygładzania wykładniczego (LES), który oblicza lokalne oszacowania zarówno poziomu, jak i trendu. Najprostszym modelem trendu zmiennym w czasie jest liniowy model wygładzania wykładniczego Browns, który wykorzystuje dwie różne wygładzone serie, które są wyśrodkowane w różnych punktach czasowych. Formuła prognozowania opiera się na ekstrapolacji linii przez dwa ośrodki. (Bardziej wyrafinowana wersja tego modelu, Holt8217s, jest omówiona poniżej.) Algebraiczna postać liniowego modelu wygładzania wykładniczego Brown8217, podobnie jak model prostego wykładniczego wygładzania, może być wyrażana w wielu różnych, ale równoważnych formach. "Norma" w tym modelu jest zwykle wyrażana następująco: Niech S oznacza serie wygładzone pojedynczo, otrzymane przez zastosowanie prostego wygładzania wykładniczego dla szeregu Y. Oznacza to, że wartość S w okresie t jest określona przez: (Przypomnijmy, że w prostym wygładzanie wykładnicze, to byłaby prognoza dla Y w okresie t1.) Następnie pozwól oznaczać podwójnie wygładzoną serię uzyskaną przez zastosowanie prostego wygładzania wykładniczego (używając tego samego 945) do serii S: Na koniec, prognozy dla Y tk. dla każdego kgt1, jest podana przez: To daje e 1 0 (to jest trochę oszukiwać, i niech pierwsza prognoza równa się faktycznej pierwszej obserwacji), i e 2 Y 2 8211 Y 1. po którym prognozy są generowane za pomocą równania powyżej. Daje to takie same dopasowane wartości, jak formuła oparta na S i S, jeśli te ostatnie zostały uruchomione przy użyciu S 1 S 1 Y 1. Ta wersja modelu jest używana na następnej stronie ilustrującej połączenie wygładzania wykładniczego z korektą sezonową. Holt8217s Linear Exponential Smoothing Brown8217s Model LES oblicza lokalne oszacowania poziomu i trendu, wygładzając najnowsze dane, ale fakt, że robi to za pomocą pojedynczego parametru wygładzania, nakłada ograniczenia na wzorce danych, które może dopasować: poziom i trend nie mogą się różnić w niezależnych stawkach. Model LES Holt8217s rozwiązuje ten problem, włączając dwie stałe wygładzania, jedną dla poziomu i drugą dla trendu. W każdej chwili t, jak w modelu Brown8217s, istnieje oszacowanie Lt poziomu lokalnego i oszacowanie T t trendu lokalnego. Tutaj są one obliczane rekurencyjnie od wartości Y obserwowanej w czasie t oraz poprzednich oszacowań poziomu i trendu za pomocą dwóch równań, które oddzielnie stosują wygładzanie wykładnicze. Jeżeli szacowany poziom i tendencja w czasie t-1 to L t82091 i T t-1. odpowiednio, wówczas prognoza dla Y tshy, która zostałaby dokonana w czasie t-1, jest równa L t-1 T t-1. Gdy obserwowana jest wartość rzeczywista, zaktualizowana estymacja poziomu jest obliczana rekurencyjnie poprzez interpolację między Y tshy i jej prognozą L t-1 T t-1, przy użyciu wag o wartości 945 i 1-945. Zmiana szacowanego poziomu, mianowicie L t 8209 L t82091. można interpretować jako hałaśliwy pomiar trendu w czasie t. Zaktualizowane oszacowanie trendu jest następnie obliczane rekursywnie przez interpolację pomiędzy L t 8209 L t82091 a poprzednim oszacowaniem trendu, T t-1. używając ciężarów 946 i 1-946: Interpretacja stałej wygładzania trendu 946 jest analogiczna do stałej wygładzania poziomu 945. Modele o małych wartościach 946 przyjmują, że trend zmienia się bardzo powoli w czasie, natomiast modele z większe 946 zakłada, że zmienia się szybciej. Model z dużym 946 uważa, że odległe jutro jest bardzo niepewne, ponieważ błędy w oszacowaniu trendów stają się dość ważne przy prognozowaniu na więcej niż jeden okres. (Powrót do początku strony.) Stałe wygładzania 945 i 946 można oszacować w zwykły sposób, minimalizując średni błąd kwadratowy prognoz 1-krokowych. Po wykonaniu tej czynności w Statgraphics, szacunkowe wartości wynoszą 945 0,3048 i 946 0,008. Bardzo mała wartość wynosząca 946 oznacza, że model przyjmuje bardzo niewielką zmianę trendu z jednego okresu do drugiego, więc w zasadzie ten model próbuje oszacować długoterminowy trend. Analogicznie do pojęcia średniego wieku danych, które są używane do oszacowania lokalnego poziomu serii, średni wiek danych wykorzystywanych do oszacowania lokalnego trendu jest proporcjonalny do 1 946, chociaż nie jest dokładnie taki sam jak ten. . W tym przypadku okazuje się, że jest to 10.006 125. Nie jest to bardzo dokładna liczba, ponieważ dokładność oszacowania 946 wynosi 2182 tak naprawdę 3 miejsca po przecinku, ale jest tego samego ogólnego rzędu wielkości co wielkość próby 100, więc model ten uśrednia dość długą historię w szacowaniu trendu. Poniższy wykres prognozy pokazuje, że model LES szacuje nieco większy lokalny trend na końcu serii niż stały trend oszacowany w modelu SEStrend. Szacowana wartość 945 jest prawie identyczna z wartością uzyskaną przez dopasowanie modelu SES z trendem lub bez niego, więc jest to prawie ten sam model. Teraz, czy wyglądają one jak rozsądne prognozy dla modelu, który ma oszacować lokalny trend Jeśli wyobrazisz sobie 8220eyeball8221 ten wykres, wygląda na to, że lokalny trend spadł na końcu serii Co się stało Parametry tego modelu zostały oszacowane poprzez zminimalizowanie błędu kwadratów prognoz 1-krok naprzód, a nie prognoz długoterminowych, w którym to przypadku trend doesn8217t robi dużą różnicę. Jeśli wszystko, na co patrzysz, to błędy 1-etapowe, nie widzisz większego obrazu trendów w ciągu (powiedzmy) 10 lub 20 okresów. Aby uzyskać ten model lepiej dopasowany do ekstrapolacji danych przez gałkę oczną, możemy ręcznie dostosować stałą wygładzania trendu, aby wykorzystała krótszą linię podstawową do oszacowania trendu. Na przykład, jeśli zdecydujemy się ustawić 946 0,1, średnia wieku danych wykorzystywanych do oszacowania trendu lokalnego wynosi 10 okresów, co oznacza, że uśredniamy trend w ciągu ostatnich 20 okresów. W tym przypadku wygląda wykres prognozy, jeśli ustawimy 946 0,1, zachowując 945 0,3. Jest to intuicyjnie uzasadnione dla tej serii, chociaż prawdopodobnie ekstrapolowanie tego trendu prawdopodobnie nie będzie dłuższe niż 10 okresów w przyszłości. A co ze statystykami błędów? Oto porównanie modeli dla dwóch modeli pokazanych powyżej oraz trzech modeli SES. Optymalna wartość 945. Dla modelu SES wynosi około 0,3, ale podobne wyniki (z odpowiednio mniejszą lub większą reaktywnością) uzyskuje się przy 0,5 i 0,2. (A) Holts linear exp. wygładzanie z alfa 0,3048 i beta 0,008 (B) Holts linear exp. wygładzanie z alfa 0.3 i beta 0.1 (C) Proste wygładzanie wykładnicze z alfa 0,5 (D) Proste wygładzanie wykładnicze z alfa 0.3 (E) Proste wygładzanie wykładnicze z alfa 0.2 Ich statystyki są prawie identyczne, więc naprawdę nie możemy dokonać wyboru na podstawie błędów prognozy 1-krokowej w ramach próby danych. Musimy odwołać się do innych kwestii. Jeśli mocno wierzymy, że oparcie obecnego szacunku trendu na tym, co wydarzyło się w ciągu ostatnich 20 okresów, ma sens, możemy postawić argumenty za modelem LES z 945 0,3 i 946 0,1. Jeśli chcemy być agnostyczni w kwestii, czy istnieje lokalny trend, to jeden z modeli SES może być łatwiejszy do wyjaśnienia, a także dałby więcej prognoz w połowie drogi na następne 5 lub 10 okresów. (Powrót do początku strony.) Który rodzaj ekstrapolacji trendów jest najlepszy: poziomy lub liniowy Dowody empiryczne sugerują, że jeśli dane zostały już skorygowane (w razie potrzeby) o inflację, może być nieostrożnością ekstrapolować krótkoterminowe liniowe trendy bardzo daleko w przyszłość. Dzisiejsze trendy mogą się w przyszłości zanikać ze względu na różne przyczyny, takie jak starzenie się produktów, zwiększona konkurencja i cykliczne spadki lub wzrosty w branży. Z tego powodu proste wygładzanie wykładnicze często zapewnia lepszą pozapróbkę, niż można by się było tego spodziewać, pomimo cytowania ekwiwalentu trendów poziomych. Tłumione modyfikacje trendów liniowego modelu wygładzania wykładniczego są również często stosowane w praktyce, aby wprowadzić nutę konserwatyzmu do swoich projekcji trendów. Model LES z tłumioną tendencją może być zaimplementowany jako specjalny przypadek modelu ARIMA, w szczególności modelu ARIMA (1,1,2). Możliwe jest obliczenie przedziałów ufności wokół długoterminowych prognoz generowanych przez modele wygładzania wykładniczego, poprzez uznanie ich za szczególne przypadki modeli ARIMA. (Uwaga: nie wszystkie programy poprawnie obliczają przedziały ufności dla tych modeli). Szerokość przedziałów ufności zależy od (i) błędu RMS modelu, (ii) rodzaju wygładzania (prostego lub liniowego) (iii) wartości (s) stałej (ów) wygładzania (-ych) i (iv) liczbę okresów, które prognozujesz. Ogólnie rzecz biorąc, interwały rozkładają się szybciej, gdy 945 staje się większy w modelu SES i rozprzestrzeniają się znacznie szybciej, gdy stosuje się liniowe zamiast prostego wygładzania. Ten temat jest omówiony dalej w sekcji modeli ARIMA notatek. (Powrót do początku strony.)
Comments
Post a Comment